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Abstract. The quantum Hamiltonian analogue of the two-dimensional ANNNI model is 
investigated by finite-lattice mass gap methods. By using lattice sizes capable of simulating 
systems of varying modulation, we are able to show the existence of a modulated phase 
between the paramagnetic and (2,2) antiphase regions. The modulation on the incom- 
mensurate to paramagnetic boundary is shown to vary and this variation is calculated as 
a function of the anisotropy. In addition we find evidence for an XY-like transition from 
the incommensurate to the paramagnetic phase and perhaps a non-universal transition 
from the paramagnetic phase to the antiphase. 

1. Introduction 

This paper is the second in a series devoted to a study of the spin Hamiltonian 

H =  -1 U; -h 1 (ULUL+i - K U ; U & + 2 )  (1.1) 

where U;, U; are Pauli spin matrices defined at the sites of a one-dimensional chain 
and A and K are positive. This Hamiltonian is of interest because it is the quantum 
Hamiltonian analogue (Barber and Duxbury 1981, Rujan 1981) of the two- 
dimensional axial next-nearest neighbour Ising (ANNNI) model. This model is currently 
receiving considerable attention as one of the simplest systems to exhibit an incom- 
mensurate/commensurate phase transition (Hornreich et a1 1979, Selke and Fisher 
1980, Selke 1981, Villain and Bak 1981, Rujan 1981, Williams et a1 1981, Barber 
and Duxbury 1981, 1982, references therein). It is also of direct relevance to transi- 
tions in lipid bilayers (Pearce and Scott 1982). 

The first paper in this series (Barber and Duxbury 1982, hereafter referred to as 
I) introduced the Hamiltonian (1 .l),  reviewed the known analytic results relevant to 
its ground-state phase structure and, most significantly, developed and analysed various 
systematic weak-coupling (in l / h  ) and strong-coupling (in A )  perturbation series. A 
summary of and comparison with other work on the ANNNI model was also given. 
We refer to I for a detailed introduction to the literature. 

In this paper we study (1.1) using finite-lattice mass gap data in a manner used 
successfully on several quantum Hamiltonians (Hamer and Barber 1980, 198ia, b, c, 
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Hamer 1981, Roomany eta1 1980, Roomany and Wyld 1980, Barber and Richardson 
1981). Some finite-lattice calculations for (1.1) have already been reported (Williams 
et a1 1981). However, these calculations were performed only on chains of up to 
eight sites. This lattice size, as we shall see, is insufficient to locate the incommensurate- 
paramagnetic phase boundary or to probe the nature of the incommensurate phase. 

This paper is arranged as follows. In 0 2 we outline our method of calculation 
and introduce the relevant p -function approximants (Roomany and Wyld 1980) that 
form the basis of our analysis. Our detailed results are presented in § 3, and the paper 
closes with an overall summary in 0 4. A preliminary report on some of this work 
has already appeared (Barber and Duxbury 1981). 

2. Method of calculation 

We follow the calculational scheme pioneered by Hamer and Barber (1980, 1981b, c). 
We break the Hamiltonian (1.1) into the form 

H = Ho + A V (2.1) 

where (rotating in spin space and adding a trivial constant) 
M 

m = l  
Ho= (1-U;) 

and 

Here M is the number of sites in the chain and we apply periodic boundary conditions 
so that u; = The eigenstates of Ho are now used to form a matrix representation 
of H, which is then diagonalised. Our interest will focus on the two lowest-lying levels 
and hence the mass gap. 

The ground state t$o of Ho is non-degenerate and such that aL40=g50 for all 
m = 1,2,  . . . , M This state is manifestly translationally invariant. Excited states are 
obtained from 4o by overturning sets of spins. In particular, the first excited state 
consists of a single overturned spin. This energy level is M-fold degenerate, the states 
being specified by 

4 1 , m  = f ~ k 4 0  m = l , 2 ,  . . . ,  M. (2.4) 

In view of the translational invariance of H, we form the linear combinations 
M 

m = l  
4 1 . k  = M-1’2 1 exp 21rikm/M)@~,,,, k = 0 ,  1 , 2 , . .  . , M - 1 .  (2.5) 

These states diagonalise V breaking the degeneracy of the first excited state of HO 
and leading to the expression 

E l ( k ) = 2 - 2 A 4 ( 2 . i r k / M ) + 0 ( A 2 )  k = 0 , 1 ,  . . . ,  M-1 (2.6) 

where 

4 (6) = cos e - K cos 2e (2.7) 

for the resulting set of discrete levels. In the limit M +  CO, this set forms a continuous 
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band (Rujan 1981, Barber and Duxbury 1982). The mass gap is determined by the 
lowest edge of this band which is given by (2.6) with 

K < $  

1 
{:OS-’( 1/4K) K 

q = 2 ~ k / M  = 

These first-order perturbation theory results imply that the first excited state of 
H no longer lies in the k = 0 sector for K >$. While we shall see that this conclusion 
is, in fact, not true for K <$, it does indicate that we cannot restrict attention in our 
finite-lattice work to the k = 0 sector. This necessitates some changes in the calcula- 
tional scheme developed by Hamer and Barber (1980, 1981b). 

We observe that the perturbation V is translationally invariant and flips two spins. 
Thus we can divide the state space of Ho up into sectors labelled by k and ‘parity’, 
where the parity of a state is even (odd) if that state is obtained from q50 by overturning 
an even (odd) number of spins. On a finite lattice with periodic boundary conditions, 
the ground state of H lies in the even-parity k = 0 sector, while the first excited state 
lies in an odd-parity sector with a value of k that will turn out to depend upon K and 
A. However, there are no matrix elements between different k sectors. Thus we can 
use the Lanczos recursion method (Hamer and Barber 1981b, Roomany et a1 1980) 
at specified K and starting from the states q51,k to find the lowest eigenvalue in each 
odd-parity k sector. The lowest-lying excited state of H and hence the mass gap can 
then be determined by inspection. The fact that the resulting matrix representation 
of H is Hermitian rather than real symmetric causes no problems in the implementation 
of the Lanczos procedure. 

The decomposition of the state space of H into sectors labelled by k is not only 
of computational significance. It also facilitates the identification (from finite-lattice 
data) of transitions to the modulated phase. On an infinite lattice, a transition to a 
modulated phase is marked by a divergence in the structure factor (or wavevector- 
dependent susceptibility) ~ ( q )  for some q Z 0 (see e.g. Redner and Stanley 1977, 
Hornreich er a1 1979, Selke 1981). A quantum Hamiltonian analogue of ~ ( q )  can 
be defined as follows. 

Augment (2.1) with a wavevector-dependent field and consider 

H ( q )  = H + h J G S ,  (2.9) 
where 

(2.10) 

with q = k/M, k = 0, 1, 2, . . . , M - 1. The wavevector-dependent susceptibility x (q )  
is then defined by 

,y(q)= lim - M -  
M + w  

(2.11) 

where E(q)  = E(h ,  A, q )  is the ground-state energy of (2.9). Applying second-order 
perturbation theory to (2.9) gives 

(2.12) 

where Eo is the ground-state energy of H and the sum is over all excited states /a) 
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of H. However, not all states contribute to the sum because of selection rules. To 
determine these recall that the ground state IO) is in the even-parity, k = q = 0 sector. 
The operator S, flips a single spin and hence the state S,lO) lies in the odd-parity, 
k = q M  sector. Thus the sum in (2.12) is only over those states in this sector. A 
divergence in ~ ( 4 )  is heralded by the vanishing of a denominator in (2.12), i.e. a 
vanishing of the mass gap between Eo and the lowest-lying excited state in the k = 4M 
sector. 

On a finite lattice ~ ( q )  is not divergent, but criticality should be reflected in a 
scaling as M-' of the relevant mass gap (Hamer and Barber 1980). This will be our 
criterion for detecting a transition to a modulated phase. 

In the limit M + 00, 4 is a continuous variable. For example, in the free-fermion 
approximation (Villain and Bak 1981, Rujan 1981) q is related to the wall density 
and changes continuously from q = 0 to 4 = $ on passage through the incommensurate 
phase from the ferromagnetic phase to the antiphase. On the other hand, on a finite 
chain of M sites q is restricted to the discrete values 

q = k/M k = 0, 1 , 2 , .  . . , [M/21 (2.13) 

where [XI is the largest integer not exceeding x. Moreover, the extrapolation to the 
infinite limit must be done at fixed q if we wish to detect a transition to a phase with 
modulation q = k/M. Hence, we must restrict attention to the sequence of lattices of 
size {M, = n / q ;  n = 1,2 ,3 ,  . , .}. This restriction severely reduces the amount of lattice 
data we have available and consequently the precision we can reach. In particular, 
the sophisticated extrapolation procedures developed by Hamer and Barber (198 IC) 
cannot, for the most part, be applied with the data currently available. 

Using the Lanczos procedure as described in the previous paragraphs we have 
obtained the lowest-lying eigenvalues for lattices up to M = 18. This data allows us 
to probe the existence of modulated phases with q = 0, a, g, 5, g, 7 and 8. To locate 
possible transitions we have used finite-size scaling theory (Fisher and Barber 1972, 
Hamer and Barber 1980) and the Roomany-Wyld approximants (Roomany and Wyld 
1980) 

1 2 1 1 1  1 

(2.14) 

to the exact beta function of (1.1). Here, Ai = &(K, A, Mi) is the mass gap on a lattice 
of size Mi, i = 1,2 .  These are calculated as a function of A at fixed K and q (= kl/Ml = 
k2 /M2 for appropriate k l  and k2 on the two lattices). Due to the loss of orthogonalisa- 
tion in the Lanczos tridiagonalisation we were unable to find the required derivatives 
of A with respect to A by the Feynman-Hellmann theorem and evaluated them instead 
by direct numerical differentiation. 

The approximants (2.14) have proved to be a very successful way of inferring the 
existence and nature of phase transitions in an infinite system from finite-lattice data 
(see e.g. Roomany and Wyld 1980, 1981, Hamer and Barber 1981c, Nightingale and 
Schick 1982). Let us recall their salient features. Unlike the exact p function of the 
finite system, which cannot vanish by virtue of the absence of any phase transition, 
the Roomany-Wyld approximants can exhibit a physical zero. The condition for PRw 
to vanish, namely 

Ai@)/A2(A) =M2/M1, (2.15) 
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is identical to the phenomenological renormalisation criterion for criticality (Nightin- 
gale 1976, Sneddon and Stinchcombe 1979, Hamer and Barber 1980, 1981a, b), 
which reflects the finite-size scaling, 

A@,, M) -M-' (2.16) 

of the mass gap at criticality. 
Two types of critical behaviour will be of interest to us here. The first type is a 

conventional second-order transition to an ordered phase, marked by an algebraic 
singularity in the mass gap of the infinite system 

A(A, M = ~ ) - ( A , - A ) "  A + A c  (2.17) 

and a simple zero in the exact P function 

P(A, M = CO) - Y - ' ( A , -  A) A + A c  (2.18) 

where the slope of P(A) at A, is determined by Y. The Roomany-Wyld approximants 
are expected to similarly exhibit a simple zero, satisfying (2.15), and approximating 
the exact critical coupling A,. In addition, the slope of PRW at the zero yields an 
estimate of Y via (2.18). These expectations have been confirmed in several models 
(see e.g. Roomany and Wyld 1980, Hamer and Barber 1981~). 

The criterion (2.15) is however powerful enough to detect more complex critical 
behaviour, in particular a Kosterlitz/Thouless-like transition to a massless phase 
(Hamer and Barber 1980, 1981b, Roomany and Wyld 1980, Barber and Richardson 
1981). In this case, the exact infinite-lattice mass gap behaves as (a, cr > 0) 

A(A, M = CO) - exp[-a(&- A)-"] A + A i  (2.19) 

with A = 0 for A > A,, while 

P ( A ,  M = CO) -A& - A)'+" A +Ai. (2.20) 

Similar behaviour is expected in pRW; estimates of A, and cr following by fitting the 
numerical results to (2.20) (Roomany and Wyld 1980). The possibility of this type 
of critical behaviour is of interest here because of the argument (Garel and Pfeuty 
1976) that a transition from paramagnetism to an incommensurately ordered phase 
should be the same universality class as the two-dimensional XY model, for which 
cr = (Kosterlitz 1974). 

3. Results 

While matrix elements of V between states in different k sectors vanish, this does 
not imply (as stated by Rujan 1981) that the first-order perturbation expansion (2.6) 
for the first excited state determines the appropriate k sector for all A.  Level crossings 
may still occur and as shown in figure 1 definitely do occur as A is varied at fixed K .  

This figure shows the lowest-lying excited states (relative to the ground-state energy) 
on a 12-site chain with K = 0.40. The states labelled k = 1 , 2  are doubly degenerate 
(corresponding to k = 11, 10, respectively). For sufficiently small A the k = 2 state is 
the lowest-lying state in accord with the first-order perturbation expansion (2.6). Two 
level crossings occur as A increases and for A >3.74 the k = 0 state becomes the 
lowest-lying excited state thereby determining the mass gap which enters into the 
finite-size scaling analysis and, in particular, PRW as defined by (2.14). 
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Figure 1. Lowest-lying energy levels (see text) in the odd-parity sector of M = 12 site 
cha infor~=0 .40 .  Levelsshownarek=O(-),k=1,11(----),k=2,10~-~-~-~), 
k = 3 , 9  (- - - - . - - .). Levels for other k lie above those shown. 

The behaviour illustrated in figure 1 is typical of that found for all K < t .  For K <a  
the k = 0 state is the lowest-Iying excited state for all A. For 4 < K < 1, the first-order 
perturbation result (2.6) determines the lowest-lying k state (as expected) for small 
A.  At larger A one or more level crossings occur with k = 0 ultimately becoming the 
true state and determining the critical behaviour. 

The Roomany-Wyld approximants (2.14) to the p function following from the 
k = 0 mass gaps are shown in figures 2 and 3 for K = 0.225 and K = 0.40. A single, 

0 251 

0 I 6 

10 150 
\\ I 

h 2 0  1 

Figure 2. Roomany-Wyld approximants PRW to the p function at K = 0.225 formed from 
mass gap data for indicated lattice sizes. 
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Figure 3. Roomany-Wyld approximants PRW at K = 0.40 formed from mass gap data for 
indicated lattices. 

simple algebraic transition is clearly suggested. From the zeros of the approximants 
we estimate 

1.690f0.005 K = 0.225 
4.60 fO.05 K = 0.40 L(K) = { 

while the slope at the zero gives the estimates 

0.98 f 0.04 K = 0.225 
v = (  

0.95 f 0.10 K = 0.40. 

(3.1) 

(3.2) 

These estimates of A, can be compared with those from weak-coupling series about 
A-' = 0 (Barber and Duxbury 1982), namely 

1.6938 f 0.0003 K = 0.225 
(4.62, k0.002 K = 0.40. (3.3) 

The agreement between (3.1) and (3.3) is excellent and confirms the existence of 
a single Ising-like transition. Similar results are found for all K < f. 

For K >4 the situation is more complicated, as was already evident from the 
perturbation series analyses reported in I. The advantage of the finite-lattice approach 
is that we can probe the modulated phase directly. In particular, we look for indications 
of a transition to a phase with modulation specified by 4 with 0 < 4 < 1. The 4 = a  
mass gap data is found by using lattices of size M = 4,8,  12, 16. The ground state, 
as always, is in the even-parity k = 0 sector and the appropriate first excited state lies 
in the odd-parity k =M/4 sector. To test for a transition to a phase with arbitrary 
modulation 4, 0 < 4  <$, we require lattices of size M = n/4, n = 1,2,  . . . , for which 
the appropriate excited state lies in the k = M4 sector. 

Using the available lattice sizes, we construct an approximate critical curve by 
testing the criticality of finite-size systems modelling infinite systems with modulation 
4 = Q, 4, i, f, $ and a. For most of these 4 values we only have one pair of lattice sizes 
to work with and hence we cannot claim to know the infinite lattice equivalent with 
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precision. However, by determining the q sector of the first mass gap to scale, we 
believe a reasonable approximation to the true behaviour can be surmised. Figures 4 
and 5 show scaled mass gap plots at K = 0.90 and K = 1.25, respectively. From these 
plots we conclude that at K =0.90, the q = $  mass gap is no longer critical while the 
q = $ still is. At K = 1.25 we conclude that neither the q = 4 nor the q = 3 system is 
critical. 

By repeating this type of analysis for various values of K in the interval K >$ we 
can generate the sequence of steps shown in figure 6 as an approximation to the critical 
q curve along the paramagnetic/incommensurate phase boundary. The infinite-lattice 
critical q curve can be expected to lie beneath the steps since, except at fortuitous 
values of K ,  the transitions detected will be inside the incommensurate phase. A 
possible infinite-lattice extrapolation of our finite-lattice curve is shown by the full 
line in figure 6 .  

1 ot 
I 

I 
0 I _-_ 

1 2  1: 1 6  
1- . ~ i 
1 6  20 

Figure 4. Scaled mass gaps for q = 4 (-), $ (- - -), a (- - ' )  at K = 0.90 



Hamiltonian studies of two-dimensional ANNNI models: 11 3227 

0 25 5 

0 i. 05 0 75 10 15 

K 

Figure 6. Variation of qc as a function of K. The estimate based on finite-lattice data is 
the step-wise function; with a possible infinite-lattice curve shown by the continuous line 
(-). The result for qc from Monte Carlo calculations (Selke 1981) is shown by the 
broken line (- - - -), while the first-order result equation (2.8) is represented by the chain 
curve (- . -. -). 

Selke (1981) has recently extended the Monte Carlo calculations of Selke and 
Fisher (1980) on the conventionally formulated ANNNI model. In particular, he studied 
M x 10 systems with 176<M< 352 and located the various transitions from the 
specific heat peaks and their size dependence. In addition, he determined 4c = 4c ( K )  

from the maximum in the structure factor ~ ( 4 ) .  While care is required in comparing 
the results of the Monte Carlo calculations (performed on a (nearly) isotropic d = 2 
ANNNI model) and those of the quantum Hamiltonian (1.1) which involves a highly 
anisotropic limit (Barber and Duxbury 1982, Rujan 198l), it is interesting to super- 
impose Selke’s results on ours as is shown also in figure 6. Selke’s curve could possibly 
be the M + a~ limit of ours with one exception. Selke’s curve (not shown) continues 
past K = i suggesting a Lifshitz point near K - 0.30, where 4c+ 0. This is presumably 
a pseudocritical effect, and is inconsistent with recent arguments on the stability of 
incommensurate phases (Coopersmith et a1 1981, Villain and Bak 1981) and our 
results. 

The chain curve in figure6 is the first-order perturbation result derived from 
equation (2.8) and it lies close to both our infinite-lattice conjecture and Selke’s curve. 
We are unable to test for the presence of a Lifshitz point because the 4 value near 
this point could only be probed by very large lattices. The question of the existence 
of a Lifshitz point at finite K is discussed further in the next section. 

Figure 6 also suggests that at K = 4, 4c is discontinuous with 

(3.4) 

where from figure 6, we estimate 40=0.15. While we have found no evidence of 
4 = g or 7 ever becoming critical, it is extremely difficult to carry out detailed calculations 
for K d 0.55. Thus a steep rise in qc near K = 4 cannot be definitely excluded. 

Figure 7 shows the Roomany-Wyld approximants at K = 0.70 constructed from 
mass gap data with 4 values of g = f (M = 8,12X 4 = 4 (M = 5,10,15) and 4 = 
( M  = 6, 12). The approximant for 4 = 4 clearly exhibits no sign of a transition, whereas 

1 1  
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4- /I\ 

h 

Figure 7. Roomany-Wyld approximants PRW at K = 0.70 formed from mass gap data for 
indicated lattices with q = k / M  = 4 (-), f (- - . -) and 4 (- - - -). 

the others exhibit zeros, with that of the 4 = 4 approximants occurring at a smaller 
value of A than the 4 = a approximant. We believe (see further below) that the q = f 
approximants locate the transition to the antiphase, while the 4 = 4 approximants yield 
evidence of an incommensurately modulated phase. 

The results presented in figure 7 thus confirm the picture that for K = 0.70 the 
ANNNI Hamiltonian exhibits two transitions as A varies; at AL to an incommensurate 
phase and then at A U  to the antiphase. A reliable estimate of AL is clearly not available 
from our current data for two reasons. Firstly, the (10,5) and (15 , lO)  approximants 
illustrated in figure 7 are not converged and secondly we have no data to test for an 
earlier transition to a phase with 4 between and 4. Nevertheless, it is encourging 
that the zero of the (15 , lO)  approximant at A ~ 2 . 4 5  is very close to the paramag- 
netic/incommensurate boundary as located from disorder parameter series in I. This 
analysis gave A L  = 2.5-2.6. 

The forms of the (10,15) and (5,lO) approximants in figure 7 are also consistent 
with a Kosterlitz-Thouless transition, although any attempt to estimate the precise 
nature of the singularity is hardly warranted. Nevertheless, these approximants are 
very similar to low-order approximants obtained for the O(2) model (Roomany and 
Wyld 1980). 

The antiphase boundary can be located by analysing the Roomany-Wyld 
approximant using 4 =$ mass gap data and lattices of size M = 4,8 ,12 ,  16. For 
K > 1.25, these are the only approximants which are critical given our resolution. 
Typical results for K = 1.75 are shown in figure 8 and are suggestive of a second-order 
transition. The precision of the estimates of the infinite-lattice results can be improved 
by the use of a simple three-term sequence extrapolation formula 

(S3 - SZ)(SZ - S1) 
2s2 - s3 -s1 

sa-sz+ (3.5) 

based on Shanks's transform (Shanks 1955, Hamer and Barber 1981~) .  Here Si 
are either of the estimates of A, and v obtained from the (4i + 4,4i)  approximants. 
Using the data in figure 8 we estimate that 

A,(K = 1.75)=0.64*0.02 (3.6) 
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Figure 8. Roomany-Wyld approximants PRW at K = 1.75 formed from mass gap data for 
indicated lattices with 4 = k / M  = a. 

while 

V ( K  = 1.75) = 0.75*0.05. (3.7) 
The corresponding estimates of Ac obtained in I were 0.67 f 0.04 from the analysis 
of weak-coupling antiphase order parameter series and 0.63 f 0.03 from the analysis 
of strong-coupling disorder parameter series. The agreement between these estimates 
and (3.6) is again remarkably good. 

We have performed a similar analysis for several values of K in the range K = 1.25 
to K = CO. The location of the phase boundary is consistently in excellent agreement 
with the series work of I. However, the estimate of the exponent v is apparently a 
function of K ,  as shown in figure 9. The significance of this is discussed in the next 
section. 

For K =a, or rather in the limit K +a, A + 0 with A ’ =  K A  fixed, (1.1) reduces to 
two uncoupled transverse Ising models (Barber and Duxbury 1981, Rujan 1981). 
Our finite-size analysis in this limit gives 

(3.8) AA = 0.998 f 0.005 

K’= 1 / K  

Figure 9. Variation of the estimates of the exponent v as a function of K ’ =  1 / ~  along 
the antiphase boundary. 
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and 

zf = 0.98 f 0.05 

in excellent agreement with the expected behaviour 

4. Discussion 

The finite-lattice calculations reported in this paper confirm and refine the conclusions 
drawn in I (Barber and Duxbury 1982) concerning the phase diagram of the ANNN~ 

Hamiltonian (1.1). 
For K < $, this model exhibits a single Ising transition from paramagnetism t o  

ferromagnetism. There is no incommensurate phase in agreement with recent argu- 
ments (Coopersmith et a1 1981, Villain and Bak 1981, Peschel and Emery 1981 j .  

On the other hand, for K >a, there is considerable structure in the excited-state band 
arising from level crossings between different k sectors. The effect this has on series 
expansions is not clear, but since the length of a series is closely related to lattice size 
(see I) extremely long series are probably required to extract the true critical behaviour. 
The anomalous results found in I for various series in the regime 0.35 < K e:: 17.5 are 
probably accounted for by this phenomenon. 

These level crossings will also affect ~ ( 4 )  as defined in (2.121, and in particular 
that ~ ( q )  which is apparently divergent. This is presumably the explanation of the 
Lifshitz point 'found' near K - 0.35 in Monte Carlo calculations (Selke and Fisher 
1980, Selke 1981), series expansions (Redner, unpublished) and in our preliminary 
results (Barber and Duxbury 1981) on short series and smaller lattices, 

For 0.5 < K < KL-  1.1, we confirm the conclusion of I that the transition from 
paramagnetism to the antiphase is via two transitions and an intermediate, probably 
massless, phase. The p -function approximants at the upper transition from paramag- 
netism are found to be indicative of a Kosterlitz/Thouless-like transition in accord 
with the prediction of Garel and Pfeuty (1976, see also Selke and Fisher 1980). 

We are unable to locate the Lifshitz point due to our restriction to finite-size 
lattices. Near the Lifshitz point we expect the value of qc to be tending to $, hence 
requiring large lattices to sample this behaviour. It does appear that if a Lifshitz point 
does exist at finite K,  the value of K L  would be larger than the K~~ -- 1.1 suggested in 1. 

Unlike the perturbation calculations of I, the finite-lattice calculations provide 
direct evidence that the intermediate phase is modulated. The modulation is charac- 
terised by a 4 vector between 0 and 3 ;  the values q = 0 and y = corresponding to 
the ferromagnetic and antiphases respectively. In principle, q should be a continuous 
function of both K and A (see e.g. Villain and Bak 19811. Unfortunately, one of the 
limitations of using chains small enough to allow the energy levels to be computed 
exactly is that 4 is restricted to a small set of discrete values. Consequently, we have 
only been able to determine the value qc = ~ J K ' )  of the modulation at the onset of 
the incommensurate phase with low resolution (recall figure 6),  which, however, is 
similar to that found in Monte Carlo calculations (Selke 1981 i for ti '> i .  A? ti = 1. 
there is an abrupt (possibly discontinuous) drop in 4c to zero. 

In this context, it is important to note that to 'fit' a state with modulation between 
q = 0 and q = a correctly and to have at least two lattices so that a sensible Roomany- 
Wyld approximant to the p function can be formed one needs lattices of size up to  
at least M = 10. Williams et a1 (1981) in their investigation of (1.1 1 via finite-lattice 
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methods used lattices of only up to eight sites, which is insufficient to locate the 
incommensurate phase. 

Finally, we turn to the antiphase boundary. This was located by scaling data from 
chains of M sites, with M an integral multiple of four. The resulting boundary was 
in excellent agreement with the series analyses of I. The estimates of the exponent 
U are however K dependent (recall figure 9) and suggest that the antiphase boundary 
above the Lifshitz point is non-universal. While this conclusion is in agreement with 
a suggestion made by one of us on the basis of perturbation expansions about K = CO 
(Barber 1982), it may be spurious for two reasons. Firstly, if there is a thin tongue 
of incommensurate phase extending to K=CO, the use of q= t  lattice sizes would be 
incapable of modelling the incommensurate phase and hence incapable of making 
quantitative predictions about the nature of the incommensurate to antiphase transi- 
tion. Secondly, if there is a Lifshitz point at finite K ,  the non-universality observed 
may still be a simple crossover effect from one type of behaviour above the Lifshitz 
point to some other behaviour at or below the Lifshitz point. The clarification of 
these points clearly awaits conclusive evidence as to the location of the upper Lifshitz 
point. 
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